
Object Oriented Programming with Python

What is Object Oriented Programming (OOP)?

Until now we have being using

Procedural programming as a way

to solve problems and create useful

products. Procedural programming

is powerful, relevant, and popular. It

shouldn’t be forgotten or discounted.

Another tool we can use in many

languages is Object-Oriented

Programming. This is a type of programming that provides a way to:

Structure programs so that data and behaviors are bundled

together into individual items called objects.

When modelling the real world around us with code it can sometimes be easier to use

devices called objects to represent real things like a person, car, an email, or website.

For example, an object could represent

a car with properties like a color,

make, model, fuel type.

and behaviors such as driving,

signaling, turning, and braking.

Or an object could also represent

person with properties like a name,

age, and address

and behaviors such as walking,

talking, breathing, and running.

Recap: Object-oriented programming (OOP) is a method of

structuring a program by bundling related properties and behaviors into

individual objects.

How do you create Objects?

To create objects in python (and most languages) you need to create a class.

A class is a blueprint for creating objects.

Creating a class of objects in python is easy. You simply write the following:

class Dog:

Use the key word “class” followed by any name you wish for the class, and a colon.

Capitalization is normally used for class names.

Now we have a Dog class but we need to add some syntax to make it useful.

Here is how a class for dogs might look like in python.

class Dog:

 def__init__(self, name, age):

 self.name = name

 self.age = age

A couple of key points:

1. _init_ means initialize this line initializes the class.

2. self is a necessary parameter that is always used with classes in python. You must

include it and use it in the way shown above to create “attributes” or variables in your

class. name and age are called “attributes” of the Dog class.

3. We can use the Dog class to create specific dog “objects” that have names, ages, or

any other attributes we wish.

Dog Class

attributes

behaviors

Some important preliminary vocabulary in object oriented

programming:

Class – Blueprint for objects

Object – an instance or unique item created from a Class

Attributes – characteristics of an object

Methods/Behaviors – functions or mini programs that can be run inside a

class.

An instance – an object created from a class.

Dog Class

attributes

behaviors

Exercise #1

Create a Dog class by entering the following code into your IDE.

Notice that we have created 4 attributes for this class: name, age, breed, furcolor

Also note that for classes we need to use 4 spaces to indent.

class Dog:

 def __init__(self, name, age, breed, furcolor):

 self.name = name

 self.age = age

 self.breed = breed

 self.furcolor = furcolor

Now the fun begins! Create 3 dog objects using the Dog class in the following way:

d1=Dog("Skippy",3,"German-Shepard","black")

d2=Dog("Scamp",4,"Golden retriever","Golden")

d3=Dog("Ginger",10,"Mix","Brownish-red")

Now try the following:

print(d1.furcolor)

print(d2.breed)

print(d3.name)

You should see that you have now created a Dog class that can creates dog objects

that contain information (attributes) about each dog organised in a nice tidy way!

Pretty cool!

Class attributes

Class attributes are attributes that have the same value for all class instances.

Exercise #2

Type the following into your IDE to see if how class attributes work

class Dog:

 #class attribute:
 species = "Canis familiaris"

 def __init__(self, name, age, breed, furcolor):
 self.name = name
 self.age = age
 self.breed = breed
 self.furcolor = furcolor

print(Dog.species)
print(d1.species)
print(d2.species)

You should notice that ALL objects or instances of the Dog class will have a species of Canis

familiaris.

Species is a class attribute.

A common use of a Class attribute is when you need to count the number of objects/instances

that are being created. Try typing in the code below to see how this might work:

class Dog:

 #class attribute:
 species = "Canis familiaris"
 count_instances=0

 def __init__(self,name):
 self.name = name

Dog.count_instances = Dog.count_instances + 1

d1=Dog("Pickles")
d2=Dog("Rupert")
d3=Dog("Sophie")

print(Dog.count_instances)

Object Methods/Behaviors

Method or Behaviors are simply functions that are defined inside a class and can only

be called from an object of that class.

Example:

class Dog:

 #class attribute:

 species = "Canis familiaris"

 def __init__(self, name, age, breed, furcolor):

 self.name = name

 self.age = age

 self.breed = breed

 self.furcolor = furcolor

 self.sound = sound

 def protect_master(self, sound):

 return (sound+" ")*5 + "!!!"

Above is a Method called protect_master (in the Dog class) that will make the dog

bark when it’s master needs protection.

It requires a new variable called sound that must be added when we call the

protect_master method.

Exercise #3

Enter the new method shown above into your code and then try the following lines:

 print(d1.protect_master("Bark"))

print(d2.protect_master("Arf"))

Exercise #4

Now we will create a new method for the Dog class that will move the dog

forward from it’s original y-position.

class Dog:
 def __init__(self, name, age, breed, furcolor, yposition=0):
 self.name = name
 self.age = age
 self.breed = breed
 self.furcolor = furcolor
 self.yposition = yposition

 def protect_master(self, sound):
 return (sound+" ")*5 + "!!!"

 def run_forward(self, steps):
 self.yposition=self.yposition+steps

d1=Dog("Skippy",3,"German-Shepard","black")

d2=Dog("Scamp",4,"Golden retriever","Golden")

d3=Dog("Ginger",10,"Mix","Brownish-red")

d1.run_forward(8)
d1.run_forward(3)
print(d1.yposition)

Now type the code above into an IDE and run it. Then create 3 more methods

in the Dog class that will:

1. move the dog: backwards (decrease the y-position).

2. move the dog: to the right (increase it’s x-position).

3. move the dog: left (decrease it’s x-position).

Hopefully, now you

are getting a sense of

how Object Oriented

Programming can

help you complete

tasks in a way that (in

some cases) may be

more organised and

logical then

Procedural

Programming.

Before moving on to more complex aspects of using Object Oriented

Programming lets solidify our understanding of its structure by practicing

creating and playing with some more classes and objects.

Exercise #5

Type in the code below to use as a template for a Bank Account Class that

can create bank accounts for users. See next page for the rest of the

exercise.

class BankAccount:
 #using object oriented programming to create a bank account
 def __init__(self,balance=0):
 self.balance=balance

 def deposit(self,add):
 self.balance=self.balance+add

 def withdraw(self,out):
 self.balance=self.balance-out

jimbank=BankAccount(100)
print (jimbank.balance)
jimbank.deposit(400)
print (jimbank.balance)

Exercise #5 continued:

Now we will add the following items to your Bank Account class:

1. A Class Attribute called “Scotia Bank”

that describes the institution where all

the bank accounts have been created

from.

2. At least 6 Objects attributes that be

different for each object created. They

may include things like:

 owners name

 account_number,

 Type (checking, savings, etc),

 Joint_account (yes/no)

 Interest_rate

Now create several bank account objects from this class with the appropriate attributes:

(b1, b2, b2,…)

Then call/print the value of specific object attributes to test them out. Examples:

print(b1.accout_number)
print(b3.interest_rate)

Exercise #5 continued:

Add at least 3 new methods to this class. They may include things like:

 Calculate_interest_earned

 Pay_a_bill

 Send_emoney_transfer

Make sure you call, run, and test your methods for particular objects.

Bonus if you can include if statements and/or nicely formatted text interface for the

user. Save your work and submit.

Exercise #6 Car factory Exercise.

Click on the Car factory Exercise button on the course page for this section. You may

copy and paste the code into Trinket (or any IDE that can output turtle graphics).

Now do the following (make sure you save and submit your work).

1. Run the code to see what it does. Look at all the lines of code after

car1.create() and make sure you understand each line and what output it

matches with.

2. Use the Add_fuel() method to fill up the tanks for car1 and car2

3. Create a class attribute that keeps track of the amount of cars made.

4. Use the newly created class attribute in #3 to see how many cars have been

created.

5. Create a new car object called car4 with all the correct attributes.

6. Use the create()method to create a visual of car4.

7. Use the Add_fuel()method to fill the tank of car4.

8. Use the newly created class attribute in #3 to see how many cars exist now.

9. Create an additional instance attribute called lights_on.

lights_on should be a Boolean variable that is equal to True or False (true

means the car lights are on, false means lights are off). You may have a default

value of false if you wish.

10. Create a new object method that will ask the user if they want the lights on or

off. If the user says on make lights_on=True if the user says off make

lights_on=False.

 11. Turn the lights of car1 and car2 on and the lights for car3 and car4 off.

 12. Create any new method of your choice relates to the actual function of a car and

 run the method for each vehicle. Examples: move_forward, oil_level,

gas_or_electric. Have fun and be creative.

Exercise #7

A blast from the past.

Try the following challenge from the junior CCC using only object oriented programming.

Exercise #8

Click on the make a deck of cards (OOP) link

on the course page. Follow the video carefully

and make a deck of cards that you can shuffle

and deal using OOP (as per the videos

instructions). When you are done:

1. Create a player class and two player objects

2. Create a game class and a game object that

will allow the players to play a simple card game

like “war” or “black jack”.

Exercise#9

Use object oriented programming to create a text-based game

that involves a sport, adventure, or battle.

The game should have:

 One or two user controlled players.

 The players should be able to move around on a grid

minimum size 10 x 10.

 Players can’t move outside the boundaries of the grid.

 The players should each have several attributes: energy,

strength, weapons, abilities etc.

 The players should have several behaviors examples:

move different directions, jump, shoot, block, pick up, defend, etc.

 The board should have pre-positioned events or objects on the grid that

can benefit or harm players examples: opponents, enemies, food, gold,

weapons, sports drink, etc.

 A clear goal communicated to the player. Examples: get to a particular

spot of the grid, get points, complete a particular task, etc.

Exercise#10 Inheitance

Click on the sub-classes (inheritance) link on course page. Watch the video

carefully and try running some of the code the author is using to make sure you

fully understand the idea of inheritance in OOP.

Now create a similar program to the one in the video except instead of using a

company and employees as your subject. Use a school and students. Make

sure in your code you clearly demonstrate you understanding of inheritance.

