Object Oriented Programming with Python
What is Object Oriented Programming (OOP)?

Until now we have being using

Procedural programming as a way

to solve problems and create useful

products. Procedural programming Object |(/)sriented
is powerful, relevant, and pgpular. It . W -
shouldn’t be forgotten or discounted.

Another tool we can use in many
languages is Object-Oriented
Programming. This is a type of programming that provides a way to:

£ RBtech

Structure programs so that data and behaviors are bundled
together into individual items called objects.

When modelling the real world around us with code it can sometimes be easier to use
devices called objects to represent real things like a person, car, an email, or website.

For example, an object could represent Car class

a car with properties like a color, ’OGO‘

make, model, fuel type

1 1 * Car
and behaviors such as driving, Objects/ ‘ \

signaling, turning, and braking.
i, e e

Green Red Blue
. Fard Toyota Vollkswagon
Or an object could also represent Mustang Prius Golf
Gasoline Electricty Deisel

person with properties like a name,
age, and address + Name
and behaviors such as walking, e Age
L]

talking, breathing, and running. Attributes ___—""+ Gender

‘dr’? / Occupation
N

Person e Walk ()
o « Eat |: :]

Functionality — | gieep ()

e ‘Work (}

Recap: Object-oriented programming (OOP) is a method of

structuring a program by bundling related properties and behaviors into
individual objects.

How do you create Objects?

To create objects in python (and most languages) you need to create a class.

Age : 5 Years

A class is a blueprint for creating objects.]
class objects
1 —
4 r -_— 1 L
o o) | () dmby m)
AGR W
Car Audi Nissan Volvo
: Breed E Breed : G Shepherd
: Bize : o, bbb Size : Large ’
' Color ‘ Color : White & Grey
i Age : Age : 6 Years
' eat() E
; run() e —— Breed : Bulldog
: name() ' Size : Large
: ' Color : Light Grey

Creating a class of objects in python is easy. You simply write the following:

class Dog:

Use the key word “class” followed by any name you wish for the class, and a colon.
Capitalization is normally used for class names.
Now we have a Dog class but we need to add some syntax to make it useful.

Here is how a class for dogs might look like in python.

class Dog:
def__init__(self, name, age):
self.name = name
self.age = age

A couple of key points:
1. _init_ means initialize this line initializes the class.

2. self is a necessary parameter that is always used with classes in python. You must
include it and use it in the way shown above to create “attributes” or variables in your
class. name and age are called "attributes” of the Dog class.

3. We can use the Dog class to create specific dog “objects” that have names, ages, or
any other attributes we wish.

Breed: Bulldog DoglObject Dog Class
Size: large < |
Colour: light gray) /| attributes |
Age: 5 years Breed
Size
Colour
Breed: Beagle Dog20bject Age
Size: large _ N /|
Colour: orange h ‘| behaviors |
Age: 6 years
Eat()
Run()
Breed: German Shepherd Dog30biject Sleep()
-| Size: large _ \ e /
Colour: white & orange |
Age: 6 years

Some important preliminary vocabulary in object oriented

programming:
Breed: Bulldog DoglObject Dog Class
Size: large P |
Colour: light gray h /| attributes |
Age: 5 years Breed
Size
Colour
Breed: Beagle Dog20bject Age
Size: large P S 4
Colour: orange h ‘| behaviors |
Age: 6 years
Eat()
Run()
Breed: German Shepherd Dog30biject Sleep()
Size: large B N\ Name () /
Colour: white & orange |
Age: 6 years

Class — Blueprint for objects
Object — an instance or unique item created from a Class

Attributes — characteristics of an object

Methods/Behaviors — functions or mini programs that can be run inside a

class.

An instance - an object created from a class.

Exercise #1

Create a Dog class by entering the following code into your IDE.
Notice that we have created 4 attributes for this class: name, age, breed, furcolor
Also note that for classes we need to use 4 spaces to indent.

class Dog:
def __init__ (self, name, age, breed, furcolor):
self.name = name
self.age = age
self.breed = breed
\\‘ self.furcolor = furcolor 4//

Now the fun begins! Create 3 dog objects using the Dog class in the following way:

dl=Dog ("Skippy", 3, "German-Shepard", "black")
d2=Dog ("Scamp",4,"Golden retriever", "Golden")

d3=Dog ("Ginger",10,"Mix" , "Brownish-red")

Now try the following:

print (dl. furcolor)
print (d2.breed)
print (d3.name)

You should see that you have now created a Dog class that can creates dog objects
that contain information (attributes) about each dog organised in a nice tidy way!
Pretty cool!

Class attributes

Class attributes are attributes that have the same value for all class instances.

Exercise #2

Type the following into your IDE to see if how class attributes work

-

class Dog:

#class attribute:
species = "Canis familiaris"

def _init_ (self, name, age, breed, furcolor):
self.name = name
self.age = age
self.breed = breed
self.furcolor = furcolor

print(Dog.species)
print(dl.species)
_ print(d2.species)

J

You should notice that ALL objects or instances of the Dog class will have a species of Canis

familiaris.

Species is a class attribute.

A common use of a Class attribute is when you need to count the number of objects/instances
that are being created. Try typing in the code below to see how this might work:

-

class Dog:

#class attribute:
species = "Canis familiaris"
count_instances=0

def init_ (self,name):
self.name = name
Dog.count_instances = Dog.count_instances + 1

d1=Dog("Pickles")
d2=Dog("Rupert")
d3=Dog("Sophie")

print(Dog.count_instances)

_

~

Object Methods/Behaviors

Method or Behaviors are simply functions that are defined inside a class and can only
be called from an object of that class.

Example:

o

class Dog:

#class attribute:
species = "Canis familiaris"

def __init_ (self, name, age, breed, furcolor):
self.name = name
self.age = age
self.breed = breed
self.furcolor = furcolor
self.sound = sound

def protect master(self, sound):
return (sound+" ")*5 + "III"

)

Above is a Method called protect_master (in the Dog class) that will make the dog
bark when it's master needs protection.

It requires a new variable called sound that must be added when we call the
protect_master method.

Exercise #3

Enter the new method shown above into your code and then try the following lines:

print(dl.protect master("Bark"))
print(d2.protect_master("Arf"))

Exercise #4

Now we will create a new method for the Dog class that will move the dog
forward from it's original y-position.
class Dog: ﬂ\\\

def init_ (self, name, age, breed, furcolor, yposition=0):
self.name = name
self.age = age
self.breed = breed
self.furcolor = furcolor
self.yposition = yposition

def protect master(self, sound):
return (sound+" ")*5 + "III"

def run_forward(self, steps):
self.yposition=self.yposition+steps

d1=Dog("Skippy", 3, "German-Shepard", "black")
d2=Dog("Scamp",4,"Golden retriever","Golden")
d3=Dog("Ginger", 10, "Mix", "Brownish-red")

dl.run_forward(8)
dl.run_forward(3)

\\\Print(dl.yposition) ///

Now type the code above into an IDE and run it. Then create 3 more methods
in the Dog class that will:

1. move the dog: backwards (decrease the y-position).
2. move the dog: to the right (increase it's x-position).
3. move the dog: left (decrease it's x-position).

Object Oriented Programming

Human SomeName
N --III===!=I!:EIII
ame Walk
Age
Email sendEmail

Hopefully, now you
are getting a sense of
how Object Oriented
Programming can
help you complete
tasks in a way that (in
some cases) may be
more organised and
logical then
Procedural
Programming.

Before moving on to more complex aspects of using Object Oriented
Programming lets solidify our understanding of its structure by practicing
creating and playing with some more classes and objects.

Exercise #5

Type in the code below to use as a template for a Bank Account Class that
can create bank accounts for users. See next page for the rest of the

exercise.

-

class BankAccount:

#using object oriented programming to create a bank account

def _init_ (self,balance=0):
self.balance=balance

def deposit(self,add):
self.balance=self.balance+add

def withdraw(self,out):
self.balance=self.balance-out

jimbank=BankAccount (1090)
print (jimbank.balance)
jimbank.deposit(400)

print (jimbank.balance)

~

Exercise #5 continued.
Now we will add the following items to your Bank Account class:

1. A Class Attribute called “Scotia Bank”
that describes the institution where all
the bank accounts have been created
from.

2. At least 6 Objects attributes that be
different for each object created. They
may include things like:

e owners hame

e account_number,

e Type (checking, savings, etc),
e Joint_account (yes/no)

e Interest_rate

Now create several bank account objects from this class with the appropriate attributes:
(b1, b2, b2,..)

Then call/print the value of specific object attributes to test them out. Examples:

print(bl.accout_number)
print(b3.interest_rate)

Exercise #5 continued:

Add at least 3 new methods to this class. They may include things like:
e (Calculate_interest_earned
e Pay_a_bill
e Send_emoney_transfer

Make sure you call, run, and test your methods for particular objects.

Bonus if you can include if statements and/or nicely formatted text interface for the
user. Save your work and submit.

EXxercise #6 Car factory Exercise.

S | 1
© " o o o o ole o o o o o o0 o o o o o

Click on the Car factory Exercise button on the course page for this section. You may
copy and paste the code into Trinket (or any IDE that can output turtle graphics).

Now do the following (make sure you save and submit your work).

> w

© o N w;

Run the code to see what it does. Look at all the lines of code after
carl.create() and make sure you understand each line and what output it
matches with.

Use the Add_fuel() method to fill up the tanks for carl and car2

Create a class attribute that keeps track of the amount of cars made.

Use the newly created class attribute in #3 to see how many cars have been
created.

Create a new car object called car4 with all the correct attributes.

Use the create()method to create a visual of car4.

Use the Add_fuel()method to fill the tank of car4.

Use the newly created class attribute in #3 to see how many cars exist now.
Create an additional instance attribute called lights on.

lights_on should be a Boolean variable that is equal to True or False (true
means the car lights are on, false means lights are off). You may have a default
value of false if you wish.

10. Create a new object method that will ask the user if they want the lights on or

off. If the user says on make lights_on=True if the user says off make
lights_on=False.

11. Turn the lights of car1 and car2 on and the lights for car3 and car4 off.
12. Create any new method of your choice relates to the actual function of a car and

run the method for each vehicle. Examples: move_forward, oil level,
gas_or_electric. Have fun and be creative.

Exercise #7

A blast from the past.
Try the following challenge from the junior CCC using only object oriented programming.

Problem Description

Boring is a type of drilling, specifically, the drilling of a tunnel, well, or hole in the earth. With
some recent events, such as the Deepwater Horizon oil spill and the rescue of Chilean miners, the
public became aware of the sophistication of the current boring technology. Using the technique
known as geosteering, drill operators can drill wells vertically, horizontally, or even on a slant
angle.

A well plan is prepared before drilling, which specifies a sequence of lines, representing a geomet-
rical shape of the future well. However, as new information becomes available during drilling, the
model can be updated and the well plan modified.

Your task is to write a program that verifies validity of a well plan by verifying that the borehole
will not intersect itself. A two-dimensional well plan is used to represent a vertical cross-section
of the borehole, and this well plan includes some drilling that has occurred starting at (0, —1) and
moving to (—1,—5). You will encode in your program the current well plan shown in the figure
below:

3-2-101 2 3 4 5 6 7 38 9 10

Input Specification

The input consists of a sequence of drilling command pairs. A drilling command pair begins with
one of four direction indicators (d for down, u for up, 1 for left, and r for right) followed by a
positive length. There is an additional drilling command indicated by g (quit) followed by any
integer, which indicates the program should stop execution. You can assume that the input is such
that the drill point will not:

e rise above the ground, nor

e be more than 200 units below ground, nor

e be more than 200 units to the left of the original starting point, nor

e be more than 200 units to the right of the original starting point

Output Specification

The program should continue to monitor drilling assuming that the well shown in the figure has
already been made. As we can see (—1, —5) is the starting position for your program. After each
command, the program must output one line with the coordinates of the new position of the drill,
and one of the two comments safe, if there has been no intersection with a previous position or
DANGER if there has been an intersection with a previous borehole location. After detecting and
reporting a self-intersection, your program must stop.

Sample Input 1
12

d 2
r 1
q 0

Output for Sample Input 1
-3 -5 safe
-3 -7 safe
-2 -1 safe

Sample Input 2
r 2

d 10

r 4

Output for Sample Input 2
1 -5 safe
1 -15 DANGER

Exercise #8

Click on the make a deck of cards (OOP) link
on the course page. Follow the video carefully
and make a deck of cards that you can shuffle
and deal using OOP (as per the videos
instructions). When you are done:

1. Create a player class and two player objects
2. Create a game class and a game object that
will allow the players to play a simple card game
like “war” or “black jack”.

Exercise#9

Use object oriented programming to create a text-based game
that involves a sport, adventure, or battle.

The game should have:

e One or two user controlled players.

e The players should be able to move around on a grid
minimum size 10 x 10.

e Players can't move outside the boundaries of the grid.

e The players should each have several attributes: energy,
strength, weapons, abilities etc.

e The players should have several behaviors examples:
move different directions, jump, shoot, block, pick up, defend, etc.

e The board should have pre-positioned events or objects on the grid that
can benefit or harm players examples: opponents, enemies, food, gold,
weapons, sports drink, etc.

e A clear goal communicated to the player. Examples: get to a particular
spot of the grid, get points, complete a particular task, etc.

Exercise#10 Inheitance

Click on the sub-classes (inheritance) link on course page. Watch the video
carefully and try running some of the code the author is using to make sure you
fully understand the idea of inheritance in OOP.

Now create a similar program to the one in the video except instead of using a
company and employees as your subject. Use a school and students. Make
sure in your code you clearly demonstrate you understanding of inheritance.

Inheritance in
Python

CHILD CLASS

