
Recursion
in Computer Programming

We know that in python you can create
functions. It’s also possible for a
function can call other functions.

Did you know that it’s even possible for
the function to call itself?

When a function calls itself we refer to
this as a recursive function.

The principle of recursion comes from
mathematics. (Sometimes a
mathematical function can be defined
as a function of itself).

Key points:

 In Programming Recursion is a way to repeat actions without while,
or for loops.

 When you see a function that calls itself, this means you have a created a
an action that will repeat itself (similar to a loop).

When to use it:

For now, you won’t use recursion often, but it is an important computer science concept
that can help you solve specific problems. You must be able to recognize and understand
recursion when it appears in code. You will notice that most of the recursive problems we
look at in this section could be solved using a simple for or while loop. This won’t always
be the case.

Exercise 1 Enter in the example at the top of the page the code above

and try it out in the IDE of your choice.

 An example of a recursive function:
 finding the factorial of a number: 6! = 6x5x4x3x2x1

def calc_factorial(x):

 if x == 1:
 return 1
 else:
 return (x * calc_factorial(x-1))

num = int(input("enter a number"))
print("The factorial of", num, "is",
calc_factorial(num))

This is an example
of a recursive
pattern. A
pattern that is
made up of itself

Recursive patterns: the product is made by repeating
itself!

def sum(x): #Function called “sum” is defined

 if (x!=0):
 return x + sum(x-1) #sum() function calls itself!
 else:
 return x;
print(sum(6))

if we input x = 6, the result would be:

x = 6 + sum(5)

this will result in 6+5+4+3+2+1 = 21

Exercise 2

Enter the code above and try it out in the IDE of your choice.

Look carefully!
1. the function sum() is called with a

value of x=6

2. sum(6) will add the number 6 to the

result of sum(5)…

3. but sum(5) calls itself as sum(4)

4. sum(4) calls itself as sum(3) ….and

so on..

5. the function keeps adding versions

of itself until x = 0.

This line repeats
again and again

because “sum”

calls itself…so
every time it is
called,…it will be
called again and
again and again!

if (x!=0)

5 + sum(4)

4 + sum(3)

2 + sum(1)

3 + sum(2)

1 + sum(0)

Exercise 3 (try and then check)

Write a program that will find the value of one number to the power of
another number (you must use recursion).

Sample input:
Base? 4

Exponent? 2

Sample output:
4 to the power of 2 is 16

Algorithm:

1. A function is created that takes two inputs:
 Base and Exponent

2. The function will return whatever the Base number is

But…

3. If power is greater than 1 the function will return:
 (Base number) x (the function itself)

 and then the program will reduced power value by 1

Try on your own before looking at the solution below.

Sample solution:

def pow(base, power):

 if power == 1:

 return base

 else:

 return base*pow(base, power-1)

print(pow(3,4))

Exercise 4 Recursive patterns!

The code below will create a drawing of a tree which uses recursion to draw a series of
branches. Each branch is made up of smaller branches identical to the branch itself. Look at
the code to see if you can predict what will happen and then cut and paste the code into an
IDE to see what happens

#Recursive Tree Challenge

from turtle import *

from random import randint

#Recursive function to draw a tree, branch by branch

def drawTree(level,size,angle,ratio):

 if level >= 0:

 forward(size)

 left(angle)

 drawTree(level-1,size/ratio,angle,ratio)

 right(2*angle)

 #Draw right branch of the tree

 drawTree(level-1,size/ratio,angle,ratio)

 left(angle)

 forward(-size)

 else:

 #Stop the recursion

 return

#Main Program Starts Here

speed(0)

penup()

goto(0,-180)

left(90)

pendown()

#Draw a tree using a recursive function

size = randint(80,120)

angle = randint(20,40)

ratio = randint(14,18)/10

level = randint(4,6)

drawTree(level,size,angle,ratio)

Exercise 4

Use recursion to find the max value in a list.

Possible algorithm:

If there is a single element, return it.

Else return the maximum between the following two values:

a) Last Element

b) Value returned by recursive call of the next element

do this until you have reached the end of the list.

Sample solution below:

(try on your own first)

Sample Solution:

def maxElement(list1):

 if len(list1) == 1:

 return list1[0]

 else:

 max = maxElement(list1[1:])

 if list1[0] > max:

 return list1[0]

 else

 return max

Exercise 5 (try and then check)

Write a program that will find the number of digits in an integer (using
recursion).

Sample input:
Enter your number: 486584

Sample output:
Number of digits: 6

Before you try:

The standard algorithm for this problem is to:

1. divide the entered number by 10.
2. Then check to see if the result is less than zero.
3. If you keep track of the number of times you divide before getting

zero,…then you have found the number of digits.

Example: 675

 675/10 = 67.5 67.1/10=6.75 6.71/10=0.671

Had to divide 3 times before result was less than zero.

Sample Solution

def DigitCount(n):

 if n < 10:

 return 1

 else:

 return 1 + DigitCount(n / 10)

