For Objects in a Circular Orbit:

Recall the following facts:

Uniform Circular Motion

An object moving in a circular path is in uniform circular motion if *v* is constant.

- The speed is constant, but the direction of motion is constantly changing.
- The centripetal acceleration is directed toward the center of the circle and has magnitude

 This acceleration requires a net force directed toward the center of the circle. Newton's second law for circular motion is

$$\vec{F}_{\text{net}} = m\vec{a} = \left(\frac{mv^2}{r}, \text{ toward center of circle}\right)$$

Universal Gravitation

Two objects with masses m_1 and m_2 that are distance r apart exert attractive gravitational forces on each other of magnitude

$$F_{1 \text{ on } 2} = F_{2 \text{ on } 1} = \frac{Gm_1m_2}{r^2}$$

where the gravitational constant is

$$G = 6.67 \times 10^{-11} \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$$

This is **Newton's law of gravity.** Gravity is an inverse-square law.

Now consider if an object is orbiting another in a **circular** path then:

- 1. It has a centripetal force. $\frac{mv^2}{r}$
- 2. Gravity is that centripetal force $\frac{GMm}{r^2}$

Therefore, for objects that orbit in a **circular path** it must be true that:

$$\frac{GMm}{r^2} = \frac{mv^2}{r}.$$