
Recursion in Computer Programming

When a function that calls
itself it is known as a
recursive function.

This process is known as
recursion.

The principle of recursion
comes from mathematics.
(Sometimes a mathematical function can be defined as a function of itself).

Key points:

 In Programming Recursion is a way to create a loop without a while,
or for, or other looping statements.

 When you see a function that call’s itself this means you have a loop

Using recursion can be the quickest and simplest way to solve a problem and is a common
method used in programming for repeating steps. You must be able to recognize and
understand recursion in code (it is common); However, it is important to realize that
recursion can be replaced with the other (looping) techniques you have learned. There is
always several ways to solve a problem.

Recursive patterns: the product is made from repeating itself

Recursion is a loop!

int sum(int x) //Function called “sum” is defined
{
 if (x!=0)
 return x + sum(x-1); //sum() function calls itself!
 else
 return x;
}

if we input x = 6, the result would be:

x = 6 + sum(5)

this will result in 6+5+4+3+2+1 = 21

This line repeats
again and again

because “sum”

calls itself…so
every time it is
called,…it will be
called again and
again and again!
if (x!=0)

5 + sum(4)

4 + sum(3)

2 + sum(1)

3 + sum(2)

1 + sum(0)

Exercise 9.1 (type it in and read the accompanying notes)

The following code will take a positive integer from the user and then find the
sum of all positive integers from that number to zero.

Sample input: 4
Sample output: 10

#include <stdio.h>

int sum(int x) //Function called sum is defined
{
 if (x!=0)
 return x + sum(x-1); //sum() function calls itself
 else
 return x;
}

int main()
{
 int number, result;

 printf("Enter a positive integer: ");
 scanf("%d", &number);

 result = sum(number);

 printf("sum=%d", result);
}

Look carefully!

1. The main program first takes

input from the user (an interger

value).

2. then the main program calls the

function sum()

3. sum() will add the number input

by the user to the result of

sum()….but sum() calls itself

and therefore keeps adding

additional results of sum()

until x = 0;

4. Then the main program and

stuffs the result into a variable

called result and prints it out.

This line repeats
again and again

because “sum”

calls itself…so
every time it is
called,…it will be
called again! and
again and again!
if (x!=0)

Exercise 9.2 (try and then check)

Write a programming in C that will do the factorial of a integer.
Reminder: a factorial is 5! = 5 x 4 x 3 x 2 x 1 = 120

Example input: 4
Example output: 24

Sample solution:

#include <stdio.h>

//function for factorial

 int factorial(int n)

{

 if(n==1) return 1;

 return n*factorial(n-1);

}

int main()

{

 int num;

 int fact=0;

 printf("Enter an integer number: ");

 scanf("%d",&num);

 fact=factorial(num);

 printf("Factorial of %d is = %d",num,fact);

 printf("\n");

 return 0;

}

Exercise 9.3 (try and then check)

Write a program that will find the value of one number to the power of
another number.

Sample input:
Base? 4

Exponent? 2

Sample output:
4 to the power of 2 is 16

Sample solution

#include <stdio.h>

int power(int n1, int n2);

int main()
{
 int base, powerRaised, result;

 printf("Enter base number: ");
 scanf("%d",&base);

 printf("Enter power number(positive integer): ");
 scanf("%d",&powerRaised);

 result = power(base, powerRaised);

 printf("%d^%d = %d", base, powerRaised, result);
 return 0;
}

int power(int base, int powerRaised)
{
 if (powerRaised != 0)
 return (base*power(base, powerRaised-1));
 else
 return 1;
}

Exercise 9.4 (try and then check)

Write a program that will find the number of digits in an integer

Sample input:
Enter your number: 486584

Sample output:
Number of digits: 6

Before you try:

The standard algorithm for this problem is to:

1. divide the entered number by 10.
2. Then check to see if the result is less than zero.
3. If you keep track of the number of times you divide before getting

zero,…then you have found the number of digits.

Example: 675

 675/10 = 67.5 67.1/10=6.75 6.71/10=0.671

Had to divide 3 times before result was less than zero.

Sample Solution

/*C program to count digits using recursion.*/

#include <stdio.h>

//function to count digits

int countDigits(int num)

{

 static int count=0;

 if(num>0)

 {

 count++;

 countDigits(num/10);

 }

 else

 {

 return count;

 }

}

int main()

{

 int number;

 int count=0;

 printf("Enter a positive integer number: ");

 scanf("%d",&number);

 count=countDigits(number);

 printf("Total digits in number %d is: %d\n",number,count);

 return 0;

}

