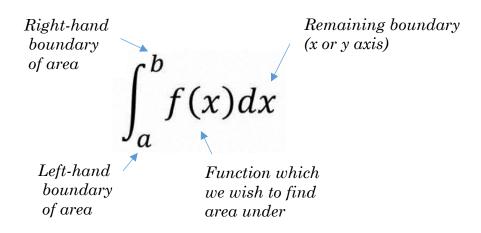

Definite Integrals, **AREA**, and the **Fundamental Theorem of Calculus**

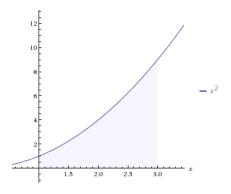
Integrals occur frequently in Engineering, Science and Economics.


In these situations, integrals usually appear as **definite integrals**. Definite integrals are integrals with **boundaries**.

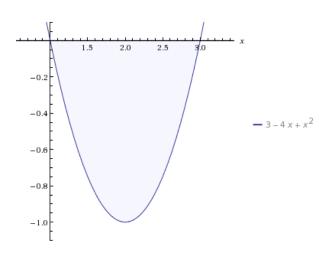
When we calculate **definite** integrals we are calculating the **area** between a particular function and the x-axis (but only between two boundaries such as **a** and **b** -see diagram below).

Determining areas is a useful procedure necessary for common calculations in Science, Mathematics and Science.

Notation of a definite integral:

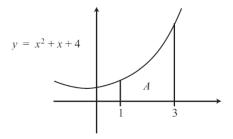

Fundamental Theorem of Calculus

(how evaluate a **Definite** integral)


Area
$$\equiv \int_{a}^{b} f(x) dx = F(b) - F(a)$$

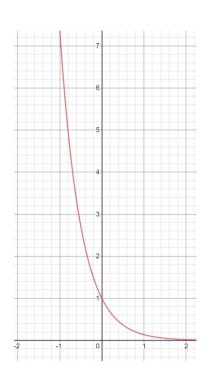
IMPORTANT!!! Capital **F** indicates: Antiderivative of f(x)

Ex. 1
$$\int_{1}^{3} x^{2} dx$$



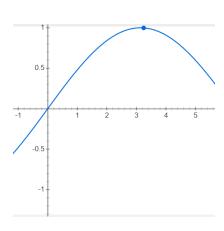
Ex. 2
$$\int_{1}^{3} x^{2} - 4x + 3 dx$$

Ex. 3


Find the area bounded by the curve $y = x^2 + x + 4$, the x-axis and the ordinates x = 1 and x = 3.

Ex. 4

Find the area expressed by the following definite integral


$$\int_{-1}^{1} e^{-2x} dx$$

Ex. 5

Find the area expressed by the following definite integral

$$\int_0^{\pi} \sin\left(\frac{x}{2}\right) dx$$

