
Assignment#4

Functions in C
In this section we will explore some of the built in functions

in C. Examples you’ve seen so far:

 printing to a screen, printf()

 collecting input from the user, fscanf()

 calculating the square root, sqrt()

There are several more built-in function in C you should

become familiar with. Many tasks in C can be completed without out having to program at

all. Becoming familiar with C’s built in functions can save you hours of time.

Future lessons you may be asked to create a computer program that can replicate these

tasks, but normally, you are free to use these built-in functions as a short cut.

Each built-in function in C is contained in a “library”. You must call the appropriate library

at the beginning of you C program to use a function.

Example:

the following code calls the function sqrt() using the library math.h

#include <stdio.h>

#include <math.h>

int main()

{

 float num, root;

 printf("Enter a number: ");

 scanf("%f", &num);

 root = sqrt(num);

 printf("Square root of %.2f = %.2f", num, root);

 return 0;

}

Below is a brief list of some common libraries and functions you should become familiar

with. Please note that each function uses specific parameters (needed input). To find out

how each function works, you can google the required functions and see examples of their

implementation.

Library

Function

math.h Library (Math Stuff)

Function Description

floor ()

This function returns the nearest integer which is less than or equal to the argument passed to

this function.

round ()

This function returns the nearest integer value of the float/double/long double argument passed

to this function. If decimal value is from “.1 to .5”, it returns integer value less than the argument.

If decimal value is from “.6 to .9”, it returns the integer value greater than the argument.

ceil ()

This function returns nearest integer value which is greater than or equal to the argument passed

to this function.

sin () This function is used to calculate sine value.

cos () This function is used to calculate cosine.

exp () This function is used to calculate the exponential “e” to the xth power. ex

tan () This function is used to calculate tangent.

sqrt () This function is used to find square root of the argument passed to this function.

pow () This is used to find the power of the given number.

trunc.(.) This function truncates the decimal value from floating point value and returns integer value.

stdlib.h Library (Standard common stuff)

rand() This function returns the random integer numbers

abs()

This function returns the absolute value of an integer . The absolute value of a

number is always positive. Only integer values are supported in C.

http://fresh2refresh.com/c/c-arithmetic-functions/c-floor-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-round-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-ceil-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-sin-cos-tan-exp-log-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-sin-cos-tan-exp-log-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-sin-cos-tan-exp-log-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-sin-cos-tan-exp-log-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-sqrt-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-pow-function/
http://fresh2refresh.com/c/c-arithmetic-functions/c-trunc-function/

Exercise 4.1 (you try then check – answers on next page)

a) Use Floor and Ceiling functions to find the floor and ceiling of a float variable

Sample Input: 34.67

Output : floor 34 Ceiling 35

b) Use the power and square root functions to write a program that find the

hypotenuse of the right angle triangle give the adjacent and opposite sides. Use

floats.

Sample input: 3, 4

Sample output: 5

c) Use the rand() function to create a program that generates pairs of random

numbers from 1 to 6 (like rolling two separate dice). Then have the program

continue to roll until one pair is two 6’s. The program should print out the random

pairs as they are generated, stop when it gets two 6’s, and announce to the user how

many rolls it took.
Bonus: prompt the user to start the rolling.

Super Bonus: have a half second delay between each roll.

Sample Solutions EXERCISE 4.1

a)

int main()

{

 float x;

 printf("\nInput Number: ");

 scanf("%f",&x);

 printf("Floor: %.0f\n", floor(x));

 printf("Ceiling: %.0f", ceil(x));

 return 0;

}

b)

int main()

{

 float x,y,tot,tot1;

 printf("\nInput Number: ");

 scanf("%f",&x);

 printf("\nInput Second Number: ");

 scanf("%f",&y);

 tot=pow(x,2)+pow(y,2);

 printf("%.2f",sqrt(tot));

 return 0;

}

c)
#include <stdio.h>

#include <time.h>

int main()

{

 int d1, d2, count;

 srand(time(NULL));

 printf("Press ENTER to begin:");

 while(getchar() != '\n');

 do

 {

 d1 = rand()%6 + 1;

 d2 = rand()%6 + 1;

 printf("\nRoll %d: (%d, %d)", count, d1, d2);

 count++;

 } while((d1!=6) || (d2!=6));

 printf("\nTwo 6's were rolled in %d rolls.", count);

 return 0;

Alterative solution for c)

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int

main ()

{

 srand (time (NULL));

 int sum, x, y;

 char d;

 sum = 0;

 int check;

 printf ("\nPress Enter To Start Program\n");

 scanf("%c",&d);

 check = 0;

 while (check == 0)

 {

 sum = sum + 1;

 y = rand () % 6 + 1;

 x = rand () % 6 + 1;

 printf ("%d,", x);

 printf ("%d\n", y);

 if (x == 6 && y == 6)

{

 printf ("\n\nDice 1 & 2 are #6 & It Took %d Tries", sum);

 check = 1;

}

 }

 return 0;

}

Library for manipulating “strings” (word stuff)
<string.h>

Strings are groups of characters that can be stored as one entity….basically a string is a
word. You can also think of strings as an ARRAY of characters. Strings are very useful for
manipulating and sorting data that is based on words. Some of the functions listed on the
next page are not available on our online compiler. But it is helpful to know they exist.

How to use strings:

Ways to declare strings:

char c[] = "abcd";

char c[50] = "abcd";

char c[] = {'a', 'b', 'c', 'd', '\0'}

char c[5] = {'a', 'b', 'c', 'd', '\0'};

#include <stdio.h>

int main ()

{

 char c[6] = "Hello";

 printf("Greeting message: %s\n", greeting);

 return 0;

}

This will output:

Greeting message: Hello

Note that the specifier for a string is %s

Library for manipulating “strings” (word stuff)
<string.h>

These are function that can manipulate strings

strlen () Gives the length of str1

strlwr () Converts string to lowercase

strupr () Converts string to uppercase

strrev () Reverses the given string

strcmp () Compares two strings character by character to see if they are equal

strcmpi () Same as strcmp() function. But, “A” and “a” are treated as same.

strchr () Returns pointer to first occurrence of char in str1

strrchr () last occurrence of given character in a string is found

strstr () Returns pointer to first occurrence of str2 in str1

strrstr () Returns pointer to last occurrence of str2 in str1

strdup () Duplicates the string

Try the following exercises to help you familiarize yourself with managing strings:

Exercise 4.2 (copy and paste)

The strcmp()compares two strings character by character. If the first character of two strings are

equal, next character of two strings are compared. This continues until the corresponding

characters of two strings are different or a null character or the end of the string is reached. The

output is the difference in ASCII of the character values that are different

Return Values for strcmp()

Return Value Remarks

0 if both strings are identical (equal)

negative if the ASCII value of first unmatched character is less than second.

positive integer if the ASCII value of first unmatched character is greater than second.

#include <stdio.h>

#include <string.h>

int main()

{

 char str1[] = "abcd", str2[] = "abed", str3[] = "abcd";

 int result;

 result = strcmp(str1, str2);

 printf("strcmp(str1, str2) = %d\n", result);

 result = strcmp(str1, str3);

 printf("strcmp(str1, str3) = %d\n", result);

 return 0;

}

Copy and paste the code above into OnlineGDB. Notice how strings are created (declared)
and see if the Return Values that get printed make sense.

Exercise 4.3 (you try then check)

a) Use string functions to create the programs that outputs the length of a string.

Sample input: Enter a work: Bicycle

Sample input: This word is 7 letter long

b) Use the strcmp() function above to wirte a program that is able to determine the

alphabetical order of 3 words. Each work must start with a different letter.

Sample Input:

Enter three words(each starting with a
different letter):
Cookie

Ball

Tree

Sample Output:

These words in alphabetical order are:
Cookie

Ball

Tree

