Calculus 12

The Area Between Two Curves

1. Make a rough sketch of each pair of functions, shade the area that is to be found between the curves on the given interval, and then calculate the area:

a.
$$f(x) = -x^2 + 6x$$
, $g(x) = 2x - 1$, [1,4]

b.
$$f(x) = 6\cos x$$
, $g(x) = -1$, $\left[0, \frac{\pi}{2}\right]$

c.
$$f(x) = e^x$$
, $g(x) = e^{2x}$, $[ln1, ln3]$

d.
$$f(x) = sinx$$
, $g(x) = cosx$, $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$

e.
$$f(x) = x^2 + 2$$
, $g(x) = x + 8$, $[-1,2]$

2. Make a rough sketch of each pair of functions, shade the area between them, determine the intersection points, and calculate the area.

a.
$$f(x) = -x^2 + 6$$
, $g(x) = -x + 4$

b.
$$f(x) = 2x^2 - 6x$$
, $g(x) = -8x + 4$

c.
$$f(x) = x^2 + 3$$
, $g(x) = -x^2 + 5$

d.
$$f(x) = \sin x$$
, $g(x) = \frac{2}{\pi}x$ Hint to find intersection points: A line with a slope of $\frac{2}{\pi}$

has a slope of
$$\frac{Rise}{Run} = \frac{2}{\pi}$$

$$= \frac{2 \div 2}{\pi \div 2}$$

$$= \frac{1}{\frac{\pi}{2}}$$
So $b = 0$ and $m = \frac{Rise}{Run} = \frac{1}{\frac{\pi}{2}}$

Sketch $y = \sin x$ then sketch the line $y = \frac{2}{\pi}x$ on top

Answers

1. a.
$$12 \text{ units}^2$$
 b. $\frac{12+\pi}{2} \text{ units}^2$ c. 2 units^2 d. $(\sqrt{2}-1) \text{ units}^2$ e. $\frac{33}{2} \text{ units}^2$

2. a.
$$(-1,5)$$
 and $(2,2)$; $A = \frac{9}{2}units^2$

b.
$$(-2,20)$$
 and $(1,-4)$; $A = 9$ units²

c.
$$(-1,4)$$
 and $(1,4)$; $A = \frac{8}{3} units^2$

d.
$$\left(-\frac{\pi}{2}, -1\right)$$
, (0,0) and $\left(\frac{\pi}{2}, 1\right)$; $2 - \frac{\pi}{2}$ units²